精彩评论
- al2359(2年前 (2023-02-06))
求科学离线插件,谢谢!34401355@qq.com
评:改版梅林固件安装SS【shadowsocks】科学上网插件教程 - al2359(2年前 (2023-02-06))
求科学离线插件,谢谢!!!
评:改版梅林固件安装SS【shadowsocks】科学上网插件教程
1、什么是GPU?什么是CPU?
GPU就是图形处理器
图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。
GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时GPU所采用的核心技术有硬件T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。GPU的生产商主要有NVIDIA和ATI。
CPU就是中央处理器
中央处理器(CPU,central processing unit)作为计算机系统的运算和控制核心,是电子计算机的主要设备之一,电脑中的核心配件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。中央处理器主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据.
GPU与CPU的区别:
CPU 由专为顺序串行处理而优化的几个核心组成,GPU 则拥有一个由数以千计的更小、 更高效的核心(专为同时处理多重任务而设计)组成的大规模并行计算架构。
2、GPU与CPU的设计区别
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。于是CPU和GPU就呈现出非常不同的架构(示意图):
图片来自nVidia CUDA文档。其中绿色的是计算单元,橙红色的是存储单元,橙黄色的是控制单元。
GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分
从上图可以看出:
Cache, local memory: CPU > GPU
Threads(线程数): GPU > CPU
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。
CPU 基于低延时的设计:
CPU有强大的ALU(算术运算单元),它可以在很少的时钟周期内完成算术计算。
当今的CPU可以达到64bit 双精度。执行双精度浮点源算的加法和乘法只需要1~3个时钟周期。
CPU的时钟周期的频率是非常高的,达到1.532~3gigahertz(千兆HZ, 10的9次方).
大的缓存也可以降低延时。保存很多的数据放在缓存里面,当需要访问的这些数据,只要在之前访问过的,如今直接在缓存里面取即可。
复杂的逻辑控制单元。当程序含有多个分支的时候,它通过提供分支预测的能力来降低延时。
数据转发。 当一些指令依赖前面的指令结果时,数据转发的逻辑控制单元决定这些指令在pipeline中的位置并且尽可能快的转发一个指令的结果给后续的指令。这些动作需要很多的对比电路单元和转发电路单元。
GPU是基于大的吞吐量设计。
GPU的特点是有很多的ALU和很少的cache. 缓存的目的不是保存后面需要访问的数据的,这点和CPU不同,而是为thread提高服务的。如果有很多线程需要访问同一个相同的数据,缓存会合并这些访问,然后再去访问dram(因为需要访问的数据保存在dram中而不是cache里面),获取数据后cache会转发这个数据给对应的线程,这个时候是数据转发的角色。但是由于需要访问dram,自然会带来延时的问题。
GPU的控制单元(左边黄色区域块)可以把多个的访问合并成少的访问。
GPU的虽然有dram延时,却有非常多的ALU和非常多的thread. 为啦平衡内存延时的问题,我们可以中充分利用多的ALU的特性达到一个非常大的吞吐量的效果。尽可能多的分配多的Threads.通常来看GPU ALU会有非常重的pipeline就是因为这样。
所以与CPU擅长逻辑控制,串行的运算。和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。
GPU的工作大部分就是这样,计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算几亿次一百以内加减乘除一样,最好的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶二十个小学生,你要是富士康你雇哪个?GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如你说的破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。但还有一些任务涉及到“流”的问题。比如你去相亲,双方看着顺眼才能继续发展。总不能你这边还没见面呢,那边找人把证都给领了。这种比较复杂的问题都是CPU来做的。
总而言之,CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别。而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了。GPU的运算速度取决于雇了多少小学生,CPU的运算速度取决于请了多么厉害的教授。教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平。但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。
3、什么类型的程序适合在GPU上运行?
1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
一、为什么使用 FPGA?
众所周知,通用处理器(CPU)的摩尔定律已入暮年,而机器学习和 Web 服务的规模却在指数级增长。
人们使用定制硬件来加速常见的计算任务,然而日新月异的行业又要求这些定制的硬件可被重新编程来执行新类型的计算任务。
FPGA 正是一种硬件可重构的体系结构。它的英文全称是Field Programmable Gate Array,中文名是现场可编程门阵列。
FPGA常年来被用作专用芯片(ASIC)的小批量替代品,然而近年来在微软、百度等公司的数据中心大规模部署,以同时提供强大的计算能力和足够的灵活性。
FPGA 为什么快?「都是同行衬托得好」。
CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。FPGA 之所以比 CPU 甚至 GPU 能效高,本质上是无指令、无需共享内存的体系结构带来的福利。
冯氏结构中,由于执行单元(如 CPU 核)可能执行任意指令,就需要有指令存储器、译码器、各种指令的运算器、分支跳转处理逻辑。由于指令流的控制逻辑复杂,不可能有太多条独立的指令流,因此 GPU 使用 SIMD(单指令流多数据流)来让多个执行单元以同样的步调处理不同的数据,CPU 也支持 SIMD 指令。
而 FPGA 每个逻辑单元的功能在重编程(烧写)时就已经确定,不需要指令。
冯氏结构中使用内存有两种作用。一是保存状态,二是在执行单元间通信。
由于内存是共享的,就需要做访问仲裁;为了利用访问局部性,每个执行单元有一个私有的缓存,这就要维持执行部件间缓存的一致性。
对于保存状态的需求,FPGA 中的寄存器和片上内存(BRAM)是属于各自的控制逻辑的,无需不必要的仲裁和缓存。
对于通信的需求,FPGA 每个逻辑单元与周围逻辑单元的连接在重编程(烧写)时就已经确定,并不需要通过共享内存来通信。
说了这么多三千英尺高度的话,FPGA 实际的表现如何呢?我们分别来看计算密集型任务和通信密集型任务。
计算密集型任务的例子包括矩阵运算、图像处理、机器学习、压缩、非对称加密、Bing 搜索的排序等。这类任务一般是 CPU 把任务卸载(offload)给 FPGA 去执行。对这类任务,目前我们正在用的 Altera(似乎应该叫 Intel 了,我还是习惯叫 Altera……)Stratix V FPGA 的整数乘法运算性能与 20 核的 CPU 基本相当,浮点乘法运算性能与 8 核的 CPU 基本相当,而比 GPU 低一个数量级。我们即将用上的下一代 FPGA,Stratix 10,将配备更多的乘法器和硬件浮点运算部件,从而理论上可达到与现在的顶级 GPU 计算卡旗鼓相当的计算能力。
在数据中心,FPGA 相比 GPU 的核心优势在于延迟。
像 Bing 搜索排序这样的任务,要尽可能快地返回搜索结果,就需要尽可能降低每一步的延迟。
如果使用 GPU 来加速,要想充分利用 GPU 的计算能力,batch size 就不能太小,延迟将高达毫秒量级。
使用 FPGA 来加速的话,只需要微秒级的 PCIe 延迟(我们现在的 FPGA 是作为一块 PCIe 加速卡)。
未来 Intel 推出通过 QPI 连接的 Xeon + FPGA 之后,CPU 和 FPGA 之间的延迟更可以降到 100 纳秒以下,跟访问主存没什么区别了。
FPGA 为什么比 GPU 的延迟低这么多?
这本质上是体系结构的区别。
FPGA 同时拥有流水线并行和数据并行,而 GPU 几乎只有数据并行(流水线深度受限)。
例如处理一个数据包有 10 个步骤,FPGA 可以搭建一个 10 级流水线,流水线的不同级在处理不同的数据包,每个数据包流经 10 级之后处理完成。每处理完成一个数据包,就能马上输出。
而 GPU 的数据并行方法是做 10 个计算单元,每个计算单元也在处理不同的数据包,然而所有的计算单元必须按照统一的步调,做相同的事情(SIMD,Single Instruction Multiple Data)。这就要求 10 个数据包必须一起输入、一起输出,输入输出的延迟增加了。
当任务是逐个而非成批到达的时候,流水线并行比数据并行可实现更低的延迟。因此对流式计算的任务,FPGA 比 GPU 天生有延迟方面的优势。
ASIC 专用芯片在吞吐量、延迟和功耗三方面都无可指摘,但微软并没有采用,出于两个原因:
接下来看通信密集型任务。
相比计算密集型任务,通信密集型任务对每个输入数据的处理不甚复杂,基本上简单算算就输出了,这时通信往往会成为瓶颈。对称加密、防火墙、网络虚拟化都是通信密集型的例子。
对通信密集型任务,FPGA 相比 CPU、GPU 的优势就更大了。
从吞吐量上讲,FPGA 上的收发器可以直接接上 40 Gbps 甚至 100 Gbps 的网线,以线速处理任意大小的数据包;而 CPU 需要从网卡把数据包收上来才能处理,很多网卡是不能线速处理 64 字节的小数据包的。尽管可以通过插多块网卡来达到高性能,但 CPU 和主板支持的 PCIe 插槽数量往往有限,而且网卡、交换机本身也价格不菲。
从延迟上讲,网卡把数据包收到 CPU,CPU 再发给网卡,即使使用 DPDK 这样高性能的数据包处理框架,延迟也有 4~5 微秒。更严重的问题是,通用 CPU 的延迟不够稳定。例如当负载较高时,转发延迟可能升到几十微秒甚至更高(如下图所示);现代操作系统中的时钟中断和任务调度也增加了延迟的不确定性。
虽然 GPU 也可以高性能处理数据包,但 GPU 是没有网口的,意味着需要首先把数据包由网卡收上来,再让 GPU 去做处理。这样吞吐量受到 CPU 和/或网卡的限制。GPU 本身的延迟就更不必说了。
那么为什么不把这些网络功能做进网卡,或者使用可编程交换机呢?ASIC 的灵活性仍然是硬伤。
尽管目前有越来越强大的可编程交换机芯片,比如支持 P4 语言的 Tofino,ASIC 仍然不能做复杂的有状态处理,比如某种自定义的加密算法。
综上,在数据中心里 FPGA 的主要优势是稳定又极低的延迟,适用于流式的计算密集型任务和通信密集型任务。
二、微软部署 FPGA 的实践
2016 年 9 月,《连线》(Wired)杂志发表了一篇《微软把未来押注在 FPGA 上》的报道 [3],讲述了 Catapult 项目的前世今生。
紧接着,Catapult 项目的老大 Doug Burger 在 Ignite 2016 大会上与微软 CEO Satya Nadella 一起做了 FPGA 加速机器翻译的演示。
演示的总计算能力是 103 万 T ops,也就是 1.03 Exa-op,相当于 10 万块顶级 GPU 计算卡。一块 FPGA(加上板上内存和网络接口等)的功耗大约是 30 W,仅增加了整个服务器功耗的十分之一。
Ignite 2016 上的演示:每秒 1 Exa-op (10^18) 的机器翻译运算能力。
微软部署 FPGA 并不是一帆风顺的。对于把 FPGA 部署在哪里这个问题,大致经历了三个阶段:
第一个阶段是专用集群,里面插满了 FPGA 加速卡,就像是一个 FPGA 组成的超级计算机。
下图是最早的 BFB 实验板,一块 PCIe 卡上放了 6 块 FPGA,每台 1U 服务器上又插了 4 块 PCIe 卡。
可以注意到该公司的名字。在半导体行业,只要批量足够大,芯片的价格都将趋向于沙子的价格。据传闻,正是由于该公司不肯给「沙子的价格」 ,才选择了另一家公司。
当然现在数据中心领域用两家公司 FPGA 的都有。只要规模足够大,对 FPGA 价格过高的担心将是不必要的。
最早的 BFB 实验板,1U 服务器上插了 4 块 FPGA 卡。像超级计算机一样的部署方式,意味着有专门的一个机柜全是上图这种装了 24 块 FPGA 的服务器(下图左)。
这种方式有几个问题:
一种不那么激进的方式是,在每个机柜一面部署一台装满 FPGA 的服务器(上图中)。这避免了上述问题 (2)(3),但 (1)(4) 仍然没有解决。
第二个阶段,为了保证数据中心中服务器的同构性(这也是不用 ASIC 的一个重要原因),在每台服务器上插一块 FPGA(上图右),FPGA 之间通过专用网络连接。这也是微软在 ISCA'14 上所发表论文采用的部署方式。
FPGA 采用 Stratix V D5,有 172K 个 ALM,2014 个 M20K 片上内存,1590 个 DSP。板上有一个 8GB DDR3-1333 内存,一个 PCIe Gen3 x8 接口,两个 10 Gbps 网络接口。一个机柜之间的 FPGA 采用专用网络连接,一组 10G 网口 8 个一组连成环,另一组 10G 网口 6 个一组连成环,不使用交换机。
这样一个 1632 台服务器、1632 块 FPGA 的集群,把 Bing 的搜索结果排序整体性能提高到了 2 倍(换言之,节省了一半的服务器)。
如下图所示,每 8 块 FPGA 穿成一条链,中间用前面提到的 10 Gbps 专用网线来通信。这 8 块 FPGA 各司其职,有的负责从文档中提取特征(黄色),有的负责计算特征表达式(绿色),有的负责计算文档的得分(红色)。
FPGA 在 Bing 的部署取得了成功,Catapult 项目继续在公司内扩张。
微软内部拥有最多服务器的,就是云计算 Azure 部门了。
Azure 部门急需解决的问题是网络和存储虚拟化带来的开销。Azure 把虚拟机卖给客户,需要给虚拟机的网络提供防火墙、负载均衡、隧道、NAT 等网络功能。由于云存储的物理存储跟计算节点是分离的,需要把数据从存储节点通过网络搬运过来,还要进行压缩和加密。
在 1 Gbps 网络和机械硬盘的时代,网络和存储虚拟化的 CPU 开销不值一提。随着网络和存储速度越来越快,网络上了 40 Gbps,一块 SSD 的吞吐量也能到 1 GB/s,CPU 渐渐变得力不从心了。
例如 Hyper-V 虚拟交换机只能处理 25 Gbps 左右的流量,不能达到 40 Gbps 线速,当数据包较小时性能更差;AES-256 加密和 SHA-1 签名,每个 CPU 核只能处理 100 MB/s,只是一块 SSD 吞吐量的十分之一。
为了加速网络功能和存储虚拟化,微软把 FPGA 部署在网卡和交换机之间。
如下图所示,每个 FPGA 有一个 4 GB DDR3-1333 DRAM,通过两个 PCIe Gen3 x8 接口连接到一个 CPU socket(物理上是 PCIe Gen3 x16 接口,因为 FPGA 没有 x16 的硬核,逻辑上当成两个 x8 的用)。物理网卡(NIC)就是普通的 40 Gbps 网卡,仅用于宿主机与网络之间的通信。
FPGA(SmartNIC)对每个虚拟机虚拟出一块网卡,虚拟机通过 SR-IOV 直接访问这块虚拟网卡。原本在虚拟交换机里面的数据平面功能被移到了 FPGA 里面,虚拟机收发网络数据包均不需要 CPU 参与,也不需要经过物理网卡(NIC)。这样不仅节约了可用于出售的 CPU 资源,还提高了虚拟机的网络性能(25 Gbps),把同数据中心虚拟机之间的网络延迟降低了 10 倍。
这就是微软部署 FPGA 的第三代架构,也是目前「每台服务器一块 FPGA」大规模部署所采用的架构。
FPGA 复用主机网络的初心是加速网络和存储,更深远的影响则是把 FPGA 之间的网络连接扩展到了整个数据中心的规模,做成真正 cloud-scale 的「超级计算机」。
第二代架构里面,FPGA 之间的网络连接局限于同一个机架以内,FPGA 之间专网互联的方式很难扩大规模,通过 CPU 来转发则开销太高。
第三代架构中,FPGA 之间通过 LTL (Lightweight Transport Layer) 通信。同一机架内延迟在 3 微秒以内;8 微秒以内可达 1000 块 FPGA;20 微秒可达同一数据中心的所有 FPGA。第二代架构尽管 8 台机器以内的延迟更低,但只能通过网络访问 48 块 FPGA。为了支持大范围的 FPGA 间通信,第三代架构中的 LTL 还支持 PFC 流控协议和 DCQCN 拥塞控制协议。
通过高带宽、低延迟的网络互联的 FPGA 构成了介于网络交换层和传统服务器软件之间的数据中心加速平面。
除了每台提供云服务的服务器都需要的网络和存储虚拟化加速,FPGA 上的剩余资源还可以用来加速 Bing 搜索、深度神经网络(DNN)等计算任务。
对很多类型的应用,随着分布式 FPGA 加速器的规模扩大,其性能提升是超线性的。
例如 CNN inference,当只用一块 FPGA 的时候,由于片上内存不足以放下整个模型,需要不断访问 DRAM 中的模型权重,性能瓶颈在 DRAM;如果 FPGA 的数量足够多,每块 FPGA 负责模型中的一层或者一层中的若干个特征,使得模型权重完全载入片上内存,就消除了 DRAM 的性能瓶颈,完全发挥出 FPGA 计算单元的性能。
当然,拆得过细也会导致通信开销的增加。把任务拆分到分布式 FPGA 集群的关键在于平衡计算和通信。
在 MICRO'16 会议上,微软提出了 Hardware as a Service (HaaS) 的概念,即把硬件作为一种可调度的云服务,使得 FPGA 服务的集中调度、管理和大规模部署成为可能。
从第一代装满 FPGA 的专用服务器集群,到第二代通过专网连接的 FPGA 加速卡集群,到目前复用数据中心网络的大规模 FPGA 云,三个思想指导我们的路线:
三、FPGA 在云计算中的角色
我对 FPGA 业界主要的遗憾是,FPGA 在数据中心的主流用法,从除微软外的互联网巨头,到两大 FPGA 厂商,再到学术界,大多是把 FPGA 当作跟 GPU 一样的计算密集型任务的加速卡。然而 FPGA 真的很适合做 GPU 的事情吗?
前面讲过,FPGA 和 GPU 最大的区别在于体系结构,FPGA 更适合做需要低延迟的流式处理,GPU 更适合做大批量同构数据的处理。
由于很多人打算把 FPGA 当作计算加速卡来用,两大 FPGA 厂商推出的高层次编程模型也是基于 OpenCL,模仿 GPU 基于共享内存的批处理模式。CPU 要交给 FPGA 做一件事,需要先放进 FPGA 板上的 DRAM,然后告诉 FPGA 开始执行,FPGA 把执行结果放回 DRAM,再通知 CPU 去取回。
CPU 和 FPGA 之间本来可以通过 PCIe 高效通信,为什么要到板上的 DRAM 绕一圈?也许是工程实现的问题,我们发现通过 OpenCL 写 DRAM、启动 kernel、读 DRAM 一个来回,需要 1.8 毫秒。而通过 PCIe DMA 来通信,却只要 1~2 微秒。
OpenCL 里面多个 kernel 之间的通信就更夸张了,默认的方式也是通过共享内存。
本文开篇就讲,FPGA 比 CPU 和 GPU 能效高,体系结构上的根本优势是无指令、无需共享内存。使用共享内存在多个 kernel 之间通信,在顺序通信(FIFO)的情况下是毫无必要的。况且 FPGA 上的 DRAM 一般比 GPU 上的 DRAM 慢很多。
因此我们提出了 ClickNP 网络编程框架 [5],使用管道(channel)而非共享内存来在执行单元(element/kernel)间、执行单元和主机软件间进行通信。
需要共享内存的应用,也可以在管道的基础上实现,毕竟 CSP(Communicating Sequential Process)和共享内存理论上是等价的嘛。ClickNP 目前还是在 OpenCL 基础上的一个框架,受到 C 语言描述硬件的局限性(当然 HLS 比 Verilog 的开发效率确实高多了)。理想的硬件描述语言,大概不会是 C 语言吧。
低延迟的流式处理,需要最多的地方就是通信。
然而 CPU 由于并行性的限制和操作系统的调度,做通信效率不高,延迟也不稳定。
此外,通信就必然涉及到调度和仲裁,CPU 由于单核性能的局限和核间通信的低效,调度、仲裁性能受限,硬件则很适合做这种重复工作。因此我的博士研究把 FPGA 定义为通信的「大管家」,不管是服务器跟服务器之间的通信,虚拟机跟虚拟机之间的通信,进程跟进程之间的通信,CPU 跟存储设备之间的通信,都可以用 FPGA 来加速。
成也萧何,败也萧何。缺少指令同时是 FPGA 的优势和软肋。
每做一点不同的事情,就要占用一定的 FPGA 逻辑资源。如果要做的事情复杂、重复性不强,就会占用大量的逻辑资源,其中的大部分处于闲置状态。这时就不如用冯·诺依曼结构的处理器。
数据中心里的很多任务有很强的局部性和重复性:一部分是虚拟化平台需要做的网络和存储,这些都属于通信;另一部分是客户计算任务里的,比如机器学习、加密解密。
首先把 FPGA 用于它最擅长的通信,日后也许也会像 AWS 那样把 FPGA 作为计算加速卡租给客户。
不管通信还是机器学习、加密解密,算法都是很复杂的,如果试图用 FPGA 完全取代 CPU,势必会带来 FPGA 逻辑资源极大的浪费,也会提高 FPGA 程序的开发成本。更实用的做法是FPGA 和 CPU 协同工作,局部性和重复性强的归 FPGA,复杂的归 CPU。
当我们用 FPGA 加速了 Bing 搜索、深度学习等越来越多的服务;当网络虚拟化、存储虚拟化等基础组件的数据平面被 FPGA 把持;当 FPGA 组成的「数据中心加速平面」成为网络和服务器之间的天堑……似乎有种感觉,FPGA 将掌控全局,CPU 上的计算任务反而变得碎片化,受 FPGA 的驱使。以往我们是 CPU 为主,把重复的计算任务卸载(offload)到 FPGA 上;以后会不会变成 FPGA 为主,把复杂的计算任务卸载到 CPU 上呢?随着 Xeon + FPGA 的问世,古老的 SoC 会不会在数据中心焕发新生?
总结:
所谓CPU和GPU分别代表什么?
CPU即中央处理器,GPU即图形处理器。
了解两者的区别首先要先明白两者的相同之处:
两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元。一句话,两者都为了完成计算任务而设计。两者的区别在于存在于片内的缓存体系和数字逻辑运算单元的结构差异:CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件;GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核)。每个核拥有的缓存大小相对小,数字逻辑运算单元也少而简单(GPU初始时在浮点计算上一直弱于CPU)。从结果上导致CPU擅长处理具有复杂计算步骤和复杂数据依赖的计算任务,如分布式计算,数据压缩,人工智能,物理模拟,以及其他很多很多计算任务等。GPU由于历史原因,是为了视频游戏而产生的(至今其主要驱动力还是不断增长的视频游戏市场),在三维游戏中常常出现的一类操作是对海量数据进行相同的操作,如:对每一个顶点进行同样的坐标变换,对每一个顶点按照同样的光照模型计算颜色值。GPU的众核架构非常适合把同样的指令流并行发送到众核上,采用不同的输入数据执行。在2003-2004年左右,图形学之外的领域专家开始注意到GPU与众不同的计算能力,开始尝试把GPU用于通用计算(即GPGPU)。之后NVIDIA发布了CUDA,AMD和Apple等公司也发布了OpenCL,GPU开始在通用计算领域得到广泛应用,包括:数值分析,海量数据处理(排序,Map-Reduce等),金融分析等等。简而言之,当程序员为CPU编写程序时,他们倾向于利用复杂的逻辑结构优化算法从而减少计算任务的运行时间,即Latency。当程序员为GPU编写程序时,则利用其处理海量数据的优势,通过提高总的数据吞吐量(Throughput)来掩盖Lantency。目前,CPU和GPU的区别正在逐渐缩小,因为GPU也在处理不规则任务和线程间通信方面有了长足的进步。另外,功耗问题对于GPU比CPU更严重。
「梦想一旦被付诸行动,就会变得神圣,如果觉得我的文章对您有用,请帮助本站成长」
上一篇:中国人走线到美国路上的互联网金融
求科学离线插件,谢谢!34401355@qq.com
评:改版梅林固件安装SS【shadowsocks】科学上网插件教程求科学离线插件,谢谢!!!
评:改版梅林固件安装SS【shadowsocks】科学上网插件教程